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Abstract-The partial-differential equations for the conservation of mass, momentum and energy were 
solved numerically in three dimensions for natural convection in a long, inclined rectangular channel 
with an aspect ratio (width/height) of 2.0. The channel was heated from below and cooled from above 
and was rotated about the long dimension. The computed particle paths for angles of inclination up to 
0.1222rad were found to be a pair of three-dimensional double spirals with oblique axes. For higher 
angles a two-dimensional longitudinal roll-cell was obtained. The flow patterns derived for these com- 
putations at Ra = 4000 and Pr = 10 are in good agreement with the photographs in Part I for glycerol 

atRa=12OOOina40x240x20mmbox. 

NOMENCLATURE 

acceleration due to gravity in the z-direction; 
height of channel; 
thermal conductivity; 

qH 
average Nusselt number, = k(~h- ; 

dynamic pressure; 
Prandtl number, = v/a; 
mean heat flux density over surface; 

Rayleigh number, = gp( Th - T,)H 3/va; 
time; 
temperature; 

temperature of cold surface; 
temperature of hot surface; 
initial temperature, = ( Th + T,)/2; 
velocity component in x-direction; 
dimensionless velocity component in 
x-direction = uH/u; 
vector velocity; 

velocity component in y-direction; 
dimensionless velocity vector, = vH/a; 
dimensionless velocity component in 
y-direction, = vH/u; 
velocity component in z-direction; 
dimensionless velocity component in 
z-direction, = wH/u; 
distance across channel; 
dimensionless coordinate, = x/H; 
distance along channel; 
dimensionless coordinate, = y/H; 
distance downward through channel; 
dimensionless coordinate, = z/H. 

*K. Yamamoto is currently with Kobe Steel, Ltd., Kobe, 
Japan. 

Greek letters 

thermal diffusivity; 

volumetric coefficient of expansion with 
temperature; 

angle of inclination of x-axis from 
horizontal; 

kinematic visco/sity ; 
density at To ; 
dimensionless time, = ta/H’; 
dimensionless temperature, 

= (T-To)/(Th-7% 
dimensionless vector potential 
[see equation (lo)]; 
dimensionless vorticity vector 
[see equation (9)]. 

INTRODUCTION 

IN PART I of this paper [l] photographs of the con- 
vective motion in glycerol in an inclined 40 x 240 x 
20mm box were taken at several depths in all three 
orthogonal planes. The box was heated from below 
and cooled from above at conditions corresponding to 

Ra 2 12 000 and Pr = 2720-3000. The variation in the 
rate of heat transfer was shown to bear a close corre- 
spondence to the several observed modes of circulation. 

Part II presents the results of a numerical solution 
of a three-dimensional mathematical model represent- 
ing essentially the same problem studied experimentally 
in Part I. The model is for an infinitely long channel 
rather than the box of finite dimensions and the’calcu- 
lations are for Ra = 4000 and Pr = 10. The infinite 
length is not expected to change the behavior signifi- 
cantly from the 12/l ratio of length-to-height for the 
box. The lower Rayleigh number was chosen to mini- 
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mize instability in the numerical calculations and the 
error due to the use of a finite gnd-size. The rate of 
heat transfer is thereby decreased significantly but the 
transitions m the rate of heat transfer have been 

observed [2.3] to be relatively insensitive to Ra. This 
value of Pr was chosen as an approxtmation for all 
fluids with Pr > 0.7. including glycerol. 

MATHEMATICAL MODEL AND METHOD 

The geometrical configuration of the model is shown 
in Fig. 1. The length of the fluid cell m the y-direction 

is postulated to be equal to the height H. The math- 
ematical model is the same as that described by Ozoe 
et al. [4,5] for a square channel, except for the modi- 
fication in the boundary conditions corresponding to 

the greater width (2H) of the channel. This model 
incorporates the Boussmesq approximations of negli- 

gible variation in physical properties. except for the 

density in the buoyancy terms, and negligible viscous 
dissipation, and is thus 

v.v=o (1) 

‘4 T 
- = xV2T 
‘4t 

%u 
-= -~~~+i’v21,+gBsinH(T-G) 
‘;rt 

(3) 

and 

‘411 
-= 
Yt 

_ L clp’+ pr 
po (:.l 

(4) 

Pw 
-= 
Pt 

-=+\~Vz~v-g~cos8(T-To). 
PO 2,- 

(5) 

Introducing the vector potential and vorticity, follow- 
ing Aziz and Hellums [6], these equations can be 

reduced to the following more tractable dimensionless 
equations : 

v*lj=o 

and 

1 -9,n 
- ---(Q*V)V 

I Pr 27 I 

= Ra 

where 

33 
C/r = V2@ 

R 3 vxv = -v2* 

and 

v = vx*. 

(6) 

(7) 

(9) 

(10) 

,z,,/ - 2H 

FIG. 1. Geometrical configuration of model 

The appropriate boundary conditions are 

g = I& = lj; = cl, = 0, n, = -g_ 

!& =g at X = 0 and 2 

(11) 

at Y=Oandl (12) 

R,=g at Z=Oandl. 

(13) 

The numerical method of solution is also identical. 
Equations (3) and (8) were solved by finite-difference 
methods using the three-dimensional AD1 (alternating 
direction-implicit method) developed by Brian [7]. The 
first and second derivatives inn space were approximated 
by central differences and the time-derivatives by a 

first-order difference. The steady state solution was 
obtained as the limit of a transient calculation. The 
three components of the vector potential were obtained 

from equation (9) using a fictitious unsteady term for 
$ as proposed by Samuels and Churchill [S]. In this 
application 17 grid-points were used in the X-direction 

and 9 in the Y- and Z-directions. resulting in 
AX = AY = AZ = 0.125. 

NUMERICAL RESULTS 

Transient behavior 
The numerical calculations were started from the 

quiescent state by a temperature shock m the fluid or 
from a different, previously computed steady state. The 
transient behavior of the mean Nusselt number over 
the central fluid plane and of the three components of 
the vector potential at the central point of the fluid 
cell is illustrated in Fig. 2. Case (a) is for a horizontal 
channel starting from the quiescent state. The values 
of $,. and e2 and negligible compared to $* and are 
indistinguishable from zero in this plot, indicating that 
the mode of circulation is a quasi-two-dimensional 
roll-cell with its axis in the X-direction. Near X = 0 
and 2 (not plotted) tiy and tiz have a magnitude com- 
parable to tix owing to the three-dimensional motion 
generated by the drag of the side walls. 
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Case (b) of Fig. 2 is for 0.0524rad of inclination 
starting from the quiescent state. JI, and $. are no 
longer negligible and the steady Nusselt number is 
slightly less than that for no inclination. Case (c) is for 
0.0873 rad of inclination starting from the steady state 
for 0.0524rad. Gx and Nu decrease while tjy and $I 
increase. However, J/x remains greater than I&. Case 
(d) is for 0.1222rad of inclination starting from the 
near-steady state at 0.0873 rad. The calculations were 
halted at 7 = 0.7 (700 time iterations) to save computer 
time. However previous experience [5] has shown that 
once tjx falls below I& in this type of problem it con- 
tinues to decrease to zero, indicating transition to a 
two-dimensional longitudinal roll-cell. The decrease in 

4 
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b 
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Nu as the angle of inclination is increased up to 
0.1222rad is in general agreement with the exper- 
imental observations of Ozoe et aI. [2] and Arnold 
et al. [3,9]. 

Fluid particle paths 
Traces of the streak-lines for fluid particles starting 

at X = 0.125 or 0.25 and Y = Z = 0.1875 are shown in 
Figs. 3-6 for these same four cases. Figure 3 which is 
for the horizontal case indicates a spiral, first decreas- 
ing, then increasing and finally decreasing again in 
radius as the particle mQves across the cell toward the 
central plane and then back to the starting point. A 
symmetrical motion occurs in the other half of the cell. 
The axial component of the motion is difficult to 
observe in experiments since it is an order of magni- 
tude less than that of the other two components and 
since observations are usually confined to the Y-Z 
planes. 

Figure 4, for 0.0524rad of inclination reveals a pair 
of skewed, double spirals. The plane of symmetry 
dividing the pairs is also skewed. When viewed from 
the Z-direction this motion appears as a series of 
oblique roll-cells, alternating in direction. Figure 5, for 
0.0873 rad of inclination, exhibits further skewing: in 
Fig. 6 for 0.1222rad of inclination and 7 = 0.7 the 
skewing almost exceeds the diagonal of the fluid cell. 
Since this is a transient state the traces should be under- 
stood as the combined path of many particles. At longer 
times this complex circulation would degenerate to a 
two-dimensional, longitudinal cell. When this longi- 
dinal cell is attained the trace of a fluid particle becomes 
a single straight line in the X-Y and Y-Z planes and 
a single loop in the X-Z plane. 

0 02 OL 06 06 

FIG. 2. Transient response of components of vector potential at central 
point and average Nusselt number at central plane. (a) Horizontal from 
quiescent state; (b) 0 = 0.0524rad from quiescent state; (c) 0 = 0.0873rad 

from f3 = 0.0524rad; (d) 0 = 0.1222rad from 0 = 0.0873rad. 
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FIG. 3. Streak-line in horizontal channel. O--starting point; O-As = 3.7. 

2 

05 

” “3 

; 
I3 L I 0.5 0 

y 

FIG. 4. Streak-line for 0.0524rad inclination. O-starting point; O-As = 2.875. 

Critical angle of inclination increases the roll-cells can become more and mol 
The critical angle of inclination for transition from oblique before the boundary between the half-ccl 

oblique to longitudinal cells is known experimentally exceeds the diagonal of fluid cell as suggested by tl 
(see Fig. 9 of [Z]) to increase from 0 to 42rad with top (X-Y) view of Fig. 6. For very large aspect ratio 
increasing aspect ratio [2,3,9]. The calculations and the critical angle would thereby be expected to al 
plots herein offer an explanation. As the aspect ratio preach n/2rad as observed. 
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FIG. 5. Streak-line for 0.0873 rad inclination. O--starting point; 0 -AT = 3.4. 

_--___ 

._----__-L________L----___-L------- 

I 
I 

r 

I-- 
0 0.5 10 1.5 20 1.0 05 

X Y 

FIG. 6. Streak-line for 0.1222 rad inclination. O-starting pomt; 0 -AT = 4.275. 

Comparison with photographs aluminum particle streaks recorded on the film. Figure 
A different kind of plot must be constructed for 7 is for the planes of X = 0.125,O.M and 1.0 with 8 = 0 

comparison with the photographs of Part I of this for a time period A7 = 0.025. The length of the line- 
paper. Figures 7-15 show short-time traces of the com- segments is proportional to the combined Y-Z com- 
puted streak-lines starting from all of the grid-points ponent of the velocity. The graph for X = 1.0 corre- 
in the indicated plane for comparison with the sponds to Fig. 8 of Part I. 
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FIG. 10. Streak-lines for 0.0873 rad inclination over 
AT = 0.05 in Z = 0.35kO.125. 
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FIG. 13. Streak-lines for 0.0873 rad inclination over 
AZ = 0.025 in the Z = 0.5 plane. 
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FIG. 11. Streak-lines for 0.0524 rad inclination over FIG. 14. Streak-lines for 0.0524 rad inclination over 
AT = 0.05 in 2 = 0.35 kO.125. AT = 0.025 in the Y = 0.5 plane. 
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FIG. 12. Streak-lines for 0.0524 rad inclination over 
AT = 0.025 in the Z = 0.5 plane. 

Figure 8 is for 0.0873 rad of inclination over A7 = 

0.025. For points starting in the plane X = 0.0625, the 
center of circulation is seen to be near the Y = 0 plane, 
i.e. the fluid interface with the adjacent fluid cell, and 

corresponds approximately to Fig. 14 of Part I. The 
plot (not shown) for X = 1.9375 is the same as that 
for X = 0.0625 except that it is rotated nrad and thus 
corresponds to the alternate cells pictured in Fig. 14 of 

Part I. For points starting in the plane X = 0.5, the 
center of circulation is seen to be near Z = 0.5, Y = 

0.375 in agreement with Fig. 15-Part I. The plot (not 
shown) for X = 1.5 is the same as that for X = 0.5 
except that it is rotated nrad and thus corresponds to 
Fig. 17-Part I. For the plane X = 1.0 the center of 
circulation is near Y = Z = 0.5 in agreement with 
Fig. 16-Part I. The slight discrepancies between the 
computed and experimental results may be due to heat 
leakage through the insulation. 

Figure 9 is for the transient state at 7 = 0.7 for 

FIG. 15. Streak-lines for 0.0524rad inclination over 
AT = 0.025 in the Y = 0.125 plane. 

responds to the 3mm width of the illumination used 
in Part I. The deviation of the streak-lines from the 
vertical indicates the still incomplete transition to a 
longitudinal cell which is attained at the steady state. 

Figure 10 is for 0.0873 rad of inclination over AZ = 
0.05 in the region Z = 0.35 + 0.125 and corresponds to 
Figs. 12 and 13 of Part I. Since the laser beam used 
in taking these photographs travelled in the decreasing 

X-direction, the brightest regions should occur where 
the aluminum flakes are moving vertically, normal to 
the beam or in the Y = -X direction. Conversely the 
aluminum flakes flowing horizontally in the direction 
of the beam reflect the least light into the camera. These 
expectations are confirmed. The short streaks and long 
streaks in Fig. 10 correspond to the light and dark 
areas, respectively, in Figs. 12 and 13 of Part I. The 
computed values can thus be used to explain the “bell- 
shapes” of the photographs. 

Figure 11 is for 0.0524 rad of inclination but other- 
0.1222 rad of inclination. The indicated width of X cor- wise for the same conditions as in Fig. 10. Figure 9 
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is the corresponding photograph of Part I. Figure 11 
can again be used to explain the light and dark patterns. 

Figures 12 and 13 are for 0.0524 and 0.0873 rad of 
inclination in the Z = 0.5 plane. Photographs were not 
taken for this condition but a light streak would be 
expected along Y = 0.5 in the first case and along the 
X-Y diagonal in the second. 

Figures 14 and 15 are for the Y = 0.50 and 0.125 
planes at 0.0524 rad of inclination over A7 = 0.025. The 

flow patterns in Figs. 14 and 15 also correspond very 

well to those in Figs. 10 and 11 of Part I. 

CONCLUSIONS 

The three-dimensional flow patterns obtained by 
numerical integration are in excellent agreement with 
those obtained photographically in Part I, despite the 
three-fold difference in Rayleigh number, the somewhat 
different Pr and the finite length of the box. This 
agreement is a confirmation of the validity of the 

mathematical model and numerical solution. 
Streak-lines appear to provide the best description 

of the complex and changing flow pattern for various 
angles of inclination. Short segments of these streak- 

lines can be used to explain otherwise anomalous 
photographic results. 
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CONFIGURATIONS DE CONVECTION NATURELLE DANS UNE LONGUE 
CAVITE RECTANGULAIRE INCLINEE ET CHAUFFEE PAR LE DESSOUS-II. 

RESULTATS NUMERIQUES EN TRIDIMENSIONNEL 

R&m&On a resolu numeriquement et dans les trois dimensions les equations aux d&ivies partielles 
de conservation de la masse, de la quantite de mouvement et de l’energie dans le cas dun ecoulement de 
convection naturelle dans un long canal rectangulaire incline presentant un rapport largeurbauteur Cgal 
a 2,0. Le canal est chauffe par le dessous et refroidi par le dessus et peut tourner autour de sa longue 
dimension. Les trajectoires calculbes des particules pour des angles d’inclinaison allant jusqu’a 41222 rad 
se presentent comme une paire de spirales doubles tridimensionnelles a axes obliques. Pour des angles 
superieurs un tourbillon cellulaire bidimensionnel longitudinal est obtenu. Les configurations d’ecoule- 
ment obtenues par calcul numtrique a Ra = 4000 et Pr = 10 sont en bon accord avec les photographies 
donnees da& la premiere partie pour du glycerol a Ra = 12tXJO dans une cavite de dimension 

40 x 240 x 20 mm. 

NATURLICHE KONVEKTIONS-STRUKTUREN IN EINEM LANGEN, 
GENEIGTEN, RECHTECKIGEN BEHALTER, DER VON UNTEN BEHEIZT WIRD-II 

DREIDIMENSIONALE, NUMERISCHE ERGEBNISSE 

Zusammenfassung-Fiir die natiirliche Konvektion in einem langen, geneigten, rechteckigen Kanal mit 
einem Seitenverhaltnis Breite: HGhe von 2:l wurden die partiellen Differentialgleichungen fiir die Staff-, 
Impuls- und Energiebilanz fiir alle drei Koordinatenrichtungen numerisch gel&t. Der Kanal wurde von 
unten beheizt und von oben gekiihlt und rotierte urn die Liingsachse. Fur Neigungswinkel bis zu 
0,1222 rad ergab die Berechnung ein Paar dreidimensionaler, doppelter Spiralen mit schriigen Achsen. 
Fiir gr6Bere Neigungswinkel ergab sich eine zweidimensionale LBngs-Rollzelle. Die fur Ra = 4000 und 
Pr = 10 berechneten Stromungsstrukturen stimmen gut mit den in Teil I fotografierten Strukturen fiir 

Glyzerin bei Ra = 12 000 in einem Behalter mit den Abmessungen 40 x 240 x 20 mm iiberein. 
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CI’PYKTYPbI CBO6OaHO8 KOHBEKUMA B AJIMHHOti HAKJIOHHOti 
I-lPRMOY~OJlbHOti KIOBETE, HAl-PEBAEMOR CHM3Y - II. WiCJIEHHbIE 

PE3YJIbTATbI AJUI TPEXMEPHOrO CJlYqAII 

hflOTslQllI--pHBeAeHbI pe3ynbTaTbI YHCJIeIiHOrO peUleHiiSl TpeXMepHbIX AH@epeHuHanbHblX 

ypaBHeHHfi B YaCTHblX lTpOH3BOAHbIX-COXpaHeHHK MaCCbl,KOnHYeCTBa ABUlKeHHR W 3HeprHH - ITpH 

eCTeCTBeHHOfi KOHBeKuUH B AnHHHOfi HaKnOHHO# IIpl?MOyrOnbHOfi KIOBeTe C OTHOlUeHHeM IJJHpHHbl 

K BbICOTe, paBHblM 2,0. KmseTa HarpeBaJIaCb CHU3y H OXnamAanaCb CBepXy U UOBOpa'iHBWIaCb 

OTHOCHTenbHOCBOefi IIpOAOnbHO~OCH.Hai%AeHo,YTOIIpliyrnaXHaKnOHaAO 0,1222pan. paCYeTHbIe 

TpaeKTOpW YaCTUU IIpeACTaBnKJW co608 llapy TpeXMepHblX ABOtiHbrX CtUipanefi C HaKnOHHblMW 

OCIIMH. Ann 6onbmerx 3HaYeHHfi yrna IlOnyYeH BHXpb B BHM AByXMepHOfi IlpOAOnbHOfi RYehKH. 

CTpyKTypblTe4eHI(K,nonyYeHHbre B ~TWX pacYeTax npe Ra=4000~ f’r= 10, xopo~uo CornacykoTcx 
c cpoTorpa@JHaMH, npeAcTaBneHHbmwi B 1 YacTH Ann rmueponn B KmBeTe pa3MepaMi.i 

4OX24OX’2OMM~pEiRu=12000. 
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