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Abstract—The partial-differential equations for the conservation of mass, momentum and energy were
solved numerically in three dimensions for natural convection in a long, inclined rectangular channel
with an aspect ratio (width/height) of 2.0. The channel was heated from below and cooled from above
and was rotated about the long dimension. The computed particle paths for angles of inclination up to
0.1222rad were found to be a pair of three-dimensional double spirals with oblique axes. For higher
angles a two-dimensional longitudinal roll-cell was obtained. The flow patterns derived for these com-
putations at Ra = 4000 and Pr = 10 are in good agreement with the photographs in Part I for glycerol
at Ra = 12000 in a 40 x 240 x 20 mm box.

NOMENCLATURE

acceleration due to gravity in the z-direction;

height of channel;

thermal conductivity;

qH
average Nusselt number, = —————;
kKThi—T)
dynamic pressure;

Prandtl number, = v/a;

mean heat flux density over surface;
Rayleigh number, = gB(T;,— T.)H>/va;
time;

temperature;

temperature of cold surface;
temperature of hot surface;

initial temperature, = (T, + T;)/2;
velocity component in x-direction;
dimensionless velocity component in
x-direction = uH/a;

vector velocity,;

velocity component in y-direction;
dimensionless velocity vector, = vH/a;
dimensionless velocity component in
y-direction, = vH/«;

velocity component in z-direction;
dimensionless velocity component in
z-direction, = wH /u;

distance across channel;
dimensionless coordinate, = x/H;
distance along channel;

dimensionless coordinate, = y/H;
distance downward through channel;
dimensionless coordinate, = z/H.
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Greek letters

a, thermal diffusivity;

B, volumetric coefficient of expansion with
temperature;

0, angle of inclination of x-axis from
horizontal;

v, kinematic viscosity;

po, density at Tp;

7, . dimensionless time, = to/H?;

D, dimensionless temperature,
= (T-T/(Ti—-T);

v, dimensionless vector potential
[see equation (10)];

Q, dimensionless vorticity vector

[see equation (9)].

INTRODUCTION

IN PART I of this paper [1] photographs of the con-
vective motion in glycerol in an inclined 40 x 240 x
20mm box were taken at several depths in all three
orthogonal planes. The box was heated from below
and cooled from above at conditions corresponding to
Ra = 12000 and Pr = 2720-3000. The variation in the
rate of heat transfer was shown to bear a close corre-
spondence to the several observed modes of circulation.

Part II presents the results of a numerical solution
of a three-dimensional mathematical model represent-
ing essentially the same problem studied experimentally
in Part I. The model is for an infinitely long channel
rather than the box of finite dimensions and the calcu-
lations are for Ra = 4000 and Pr = 10. The infinite
length is not expected to change the behavior signifi-
cantly from the 12/1 ratio of length-to-height for the
box. The lower Rayleigh number was chosen to mini-
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mize instability in the numerical calculations and the
error due to the use of a finite grid-size. The rate of
heat transfer is thereby decreased significantly but the
transitions 1n the rate of heat transfer have been
observed [2, 3] to be relatively insensitive to Ra. This
value of Pr was chosen as an approximation for all
flutds with Pr > 0.7, including glycerol.

MATHEMATICAL MODEL AND METHOD

The geometrical configuration of the model is shown
in Fig. 1. The length of the fluid cell 1n the y-direction
is postulated to be equal to the height H. The math-
ematical model is the same as that described by Ozoe
et al. [4, 5] for a square channel, except for the modi-
fication in the boundary conditions corresponding to
the greater width (2H) of the channel. This model
incorporates the Boussinesq approximations of negli-
gible variation in physical properties. except for the
density in the buoyancy terms, and negligible viscous
dissipation, and is thus

Vv=40 (1)
vT
— = VT (2)
Yt
“u 1 p .
T —;0-(;;+ W2u+gBsin (T —Ty) (3)
Y 1 {p
o~ (,p +1Vir 4
ot po Oy
and
Yw 1 op
3% - —;0%’;»+vvzw—g/}cose(T—To). (5)

Introducing the vector potential and vorticity, follow-
ing Aziz and Hellums [6], these equations can be
reduced to the following more tractable dimensionless
equations:

V=0 (6)
70 _ Vi (7
gt )
and
1] 9Q
——=——=(2-V)V
PrLQr ( ) J
o0 )
———cosf
cY
= Ra ~sin0+€(£cosﬂ +VQ (8)
oz 0X
oD
—asmﬂ ]
where
Q=VXV=_V (9
and
V=VXy. (10)

FiG. 1. Geometrical configuration of model.

The appropriate boundary conditions are
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The numerical method of solution is also identical.
Equations (7) and (8) were solved by finite-difference
methods using the three-dimensional ADI (alternating
direction-implicit method) developed by Brian [7]. The
first and second derivatives in space were approximated
by central differences and the time-derivatives by a
first-order difference. The steady state solution was
obtained as the limit of a transient calculation. The
three components of the vector potential were obtained
from equation (9) using a fictitious unsteady term for
W as proposed by Samuels and Churchill [8]. In this
application 17 grid-points were used in the X-direction
and 9 in the Y- and Z-directions. resulting in
AX =AY =AZ =0.125.

NUMERICAL RESULTS

Transient behavior

The numerical calculations were started from the
quiescent state by a temperature shock n the fluid or
from a different, previously computed steady state. The
transient behavior of the mean Nusselt number over
the central fluid plane and of the three components of
the vector potential at the central point of the fluid
cell is illustrated in Fig. 2. Case (a) is for a horizontal
channel starting from the quiescent state. The values
of Y, and . and negligible compared to y, and are
indistinguishable from zero in this plot, indicating that
the mode of circulation is a quasi-two-dimensional
roll-cell with its axis in the X-direction. Near X =0
and 2 (not plotted) ¥, and , have a magnitude com-
parable to Y, owing to the three-dimensional motion
generated by the drag of the side walls.
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Case (b) of Fig. 2 is for 0.0524rad of inclination
starting from the quiescent state. Y, and ¥, are no
longer negligible and the steady Nusselt number is
slightly less than that for no inclination. Case (c) is for
0.0873 rad of inclination starting from the steady state
for 0.0524rad. ¥, and Nu decrease while ¥, and ),
increase. However, Y. remains greater than i,. Case
(d) is for 0.1222rad of inclination starting from the
near-steady state at 0.0873rad. The calculations were
halted at T = 0.7 (700 time iterations) to save computer
time. However previous experience [5] has shown that
once Y, falls below i, in this type of problem it con-
tinues to decrease to zero, indicating transition to a
two-dimensional longitudinal roll-cell. The decrease in

7 T T T T 1 T
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Nu as the angle of inclination is increased up to
0.1222rad is in general agreement with the exper-
imental observations of Ozoe et al. [2] and Arnold
et al. [3,9].

Fluid particle paths

Traces of the streak-lines for fluid particles starting
at X =0.1250r0.25and Y = Z = 0.1875 are shown in
Figs. 3-6 for these same four cases. Figure 3 which is
for the horizontal case indicates a spiral, first decreas-
ing, then increasing and finally decreasing again in
radius as the particle moves across the cell toward the
central plane and then back to the starting point. A
symmetrical motion occurs in the other half of the cell.
The axial component of the motion is difficult to

T observe in experiments since it is an order of magni-
6 v, ﬂ i 0 7 tude less than that of the other two components and
5} 1 F since observations are usually confined to the Y-Z
s 11 J planes.
¢, L L | Figure 4, for 0.0524 rad of inclination reveals a pair
, "y of skewed, double spirals. The plane of symmetry
i 1T 7 dividing the pairs is also skewed. When viewed from
iy 1t i 1 the Z-direction this motion appears as a series of
ot e oblique roli-cells, alternating in direction. Figure 5, for
3 ' e — 0.0873rad of inclination, exhibits further skewing: in
Fig. 6 for 0.1222rad of inclination and 7 =0.7 the
skewing almost exceeds the diagonal of the fluid ceil.
o 1T 7 Since this is a transient state the traces should be under-
Nu stood as the combined path of many particles. At longer
3 4 F . times this complex circulation would degenerate to a
two-dimensional, longitudinal cell. When this longi-
ol o T dinal cell is attained the trace of a finid particle becomes
0 0z 0¢ o 02 0¢ 06 08 a single straight line in the X-Y and Y-Z planes and
(a) (b} a single loop in the X-Z plane.
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F1G. 2. Transient response of components of vector potential at central

point and average Nusselt number at central plane. (a) Horizontal from

quiescent state; (b) # = 0.0524 rad from quiescent state; (c) 8 = 0.0873 rad
from 6 = 0.0524rad; (d) 8 = 0.1222rad from 8 = 0.0873rad.
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FiG. 4. Streak-line for 0.0524 rad inclination. O —starting point; @-—At = 2.875.

Critical angle of inclination increases the roll-cells can become more and mo:

The critical angle of inclination for transition from oblique before the boundary between the half-cel
oblique to longitudinal cells is known experimentally exceeds the diagonal of fluid cell as suggested by tt
(see Fig. 9 of [2]) to increase from O to n/2rad with top (X-Y) view of Fig. 6. For very large aspect ratic
increasing aspect ratio {2, 3,9]. The calculations and the critical angle would thereby be expected to aj
plots herein offer an explanation. As the aspect ratio proach m/2rad as observed.
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FIG. 6. Streak-line for 0.1222 rad inclination. O—starting point; @ — At = 4.275.

Comparison with photographs

A different kind of plot must be constructed for
comparison with the photographs of Part I of this
paper. Figures 7-15 show short-time traces of the com-
puted streak-lines starting from all of the grid-points
in the indicated plane for comparison with the

aluminum particle streaks recorded on the film. Figure
7 is for the planes of X = 0.125,0.50 and 1.0 with8 =0
for a time period At = 0.025. The length of the line-
segments is proportional to the combined Y-Z com-
ponent of the velocity. The graph for X = 1.0 corre-
sponds to Fig. 8 of Part 1.
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F1G. 10. Streak-lines for 0.0873 rad inclination over
At =0.05in Z = 0.35+0.125.
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F16G. 11. Streak-lines for 0.0524 rad inclination over
At=005in Z =0.354+0.125.
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F1G. 12. Streak-lines for 0.0524 rad inclination over
At = 0.025 in the Z = 0.5 plane.

Figure 8 is for 0.0873rad of inclination over At =
0.025. For points starting in the plane X = 0.0625, the
center of circulation is seen to be near the Y = 0 plane,
i.e. the fluid interface with the adjacent fluid cell, and
corresponds approximately to Fig. 14 of Part 1. The
plot (not shown) for X = 19375 is the same as that
for X = 0.0625 except that it is rotated nrad and thus
corresponds to the alternate cells pictured in Fig. 14 of
Part 1. For points starting in the plane X = 0.5, the
center of circulation is seen to be near Z =05, Y =
0.375 in agreement with Fig. 15—Part 1. The plot (not
shown) for X =1.5 is the same as that for X =0.5
except that it is rotated nrad and thus corresponds to
Fig. 17—Part 1. For the plane X = 1.0 the center of
circulation is near Y=2Z = 0.5 in agreement with
Fig. 16—Part 1. The slight discrepancies between the
computed and experimental results may be due to heat
leakage through the insulation.

Figure 9 is for the transient state at t= 0.7 for
0.1222 rad of inclination. The indicated width of X cor-
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F16G. 13. Streak-lines for 0.0873 rad inclination over
Az =0.025 in the Z = 0.5 plane.
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F16G. 14. Streak-lines for 0.0524 rad inclination over
At =0.025 in the Y = 0.5 plane.
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F1G. 15. Streak-lines for 0.0524 rad inclination over
At = 0.025 in the Y = 0.125 plane.

responds to the 3mm width of the illumination used
in Part I. The deviation of the streak-lines from the
vertical indicates the still incomplete transition to a
longitudinal cell which is attained at the steady state.

Figure 10 is for 0.0873rad of inclination over At =
0.05 in the region Z = 0.354-0.125 and corresponds to
Figs. 12 and 13 of Part I. Since the laser beam used
in taking these photographs travelled in the decreasing
X-direction, the brightest regions should occur where
the aluminum flakes are moving vertically, normal to
the beam or in the Y = — X direction. Conversely the
aluminum flakes flowing horizontally in the direction
ofthe beam reflect the least light into the camera. These
expectations are confirmed. The short streaks and long
streaks in Fig. 10 correspond to the light and dark
areas, respectively, in Figs. 12 and 13 of Part I. The
computed values can thus be used to explain the “bell-
shapes” of the photographs.

Figure 11 is for 0.0524rad of inclination but other-
wise for the same conditions as in Fig. 10. Figure 9
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is the corresponding photograph of Part I. Figure 11
can again be used to explain the light and dark patterns.

Figures 12 and 13 are for 0.0524 and 0.0873rad of
inclination in the Z = 0.5 plane. Photographs were not
taken for this condition but a light streak would be
expected along Y = 0.5 in the first case and along the
X-Y diagonal in the second.

Figures 14 and 15 are for the Y = 0.50 and 0.125
planes at 0.0524 rad of inclination over At = 0.025. The
flow patterns in Figs. 14 and 15 also correspond very
well to those in Figs. 10 and 11 of Part I.

CONCLUSIONS

The three-dimensional flow patterns obtained by
numerical integration are in excellent agreement with
those obtained photographically in Part I, despite the
three-fold difference in Rayleigh number, the somewhat
different Pr and the finite length of the box. This
agreement is a confirmation of the validity of the
mathematical model and numerical solution.

Streak-lines appear to provide the best description
of the complex and changing flow pattern for various
angles of inclination. Short segments of these streak-
lines can be used to explain otherwise anomalous
photographic results.
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CONFIGURATIONS DE CONVECTION NATURELLE DANS UNE LONGUE
CAVITE RECTANGULAIRE INCLINEE ET CHAUFFEE PAR LE DESSOUS—IL
RESULTATS NUMERIQUES EN TRIDIMENSIONNEL

Reésume—On a résolu numériquement et dans les trois dimensions les équations aux dérivées partielles
de conservation de la masse, de la quantité de mouvement et de I’énergie dans le cas d’un écoulement de
convection naturelle dans un long canal rectangulaire incliné présentant un rapport largeur/hauteur égal
a 2,0. Le canal est chauffé par le dessous et refroidi par le dessus et peut tourner autour de sa longue
dimension. Les trajectoires calculées des particules pour des angles d’inclinaison allant jusqu’a 0,1222 rad
se présentent comme une paire de spirales doubles tridimensionnelles a axes obliques. Pour des angles
supérieurs un tourbillon cellulaire bidimensionnel longitudinal est obtenu. Les configurations d’écoule-
ment obtenues par calcul numérique 4 Ra = 4000 et Pr = 10 sont en bon accord avec les photographies
données dans la premiére partie pour du glycerol 2 Ra = 12000 dans une cavit¢ de dimension
40 x 240 x 20 mm.

NATURLICHE KONVEKTIONS-STRUKTUREN IN EINEM LANGEN,
GENEIGTEN, RECHTECKIGEN BEHALTER, DER VON UNTEN BEHEIZT WIRD—II
DREIDIMENSIONALE, NUMERISCHE ERGEBNISSE

Zusammenfassung —Fir die natiirliche Konvektion in einem langen, geneigten, rechteckigen Kanal mit
einem Seitenverhiltnis Breite: Hohe von 2:1 wurden die partiellen Differentialgleichungen fur die Stoff-,
Impuls- und Energiebilanz fir alle drei Koordinatenrichtungen numerisch gelost. Der Kanal wurde von
unten beheizt und von oben gekiihlt und rotierte um die Langsachse. Fur Neigungswinkel bis zu
0,1222rad ergab die Berechnung ein Paar dreidimensionaler, doppelter Spiralen mit schriagen Achsen.
Fiir groBere Neigungswinkel ergab sich eine zweidimensionale Langs-Rollzelle. Die fiir Ra = 4000 und
Pr = 10 berechneten Stromungsstrukturen stimmen gut mit den in Teil I fotografierten Strukturen fir
Glyzerin bei Ra = 12000 in einem Behalter mit den Abmessungen 40 x 240 x 20 mm tiiberein.
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CTPYKTYPbl CBOBOJHOV KOHBEKLIMM B JUIMHHOM HAKJIOHHOM
NPAMOYIO/IHOM KIOBETE, HATPEBAEMOIN CHU3Y — II. YACJIEHHBIE
PE3VJIbTATBI J151 TPEXMEPHOIO CIIVYAS

Annoramys — [IpuBeseHbl pe3ynbTaThl MHCAEHHOTO pEUIEHHA TpexMepHbiX auddepeHLHanbHbIX
ypaBHEHHH{ B 4aCTHbIX NMPOM3BOAHBIX-COXPAHEHHA MACCHI, KOJIMYECTBA HABHKCHUN M 3HEPTHH — IIPHU
€CTECTBEHHOM KOHBEKLMH B JUIMHHOK HAK/JIOHHOH NPSAMOYroNibHOH KIOBETE C OTHOLUICHHEM ULIMPHHbLI
K BbicOTe, paBHbiM 2,0. KioBera Harpeeanach CHM3Y M OXJIaX[ajlaCh CBEPXY H NOBOpAa4YHMBajiach
OTHOCHTEJILHO CBOeH npoaoibHo# ocu. HaltneHo, 4ro npu yriaax HakiaoHa 1o 0,1222 pan. pacuyeTHbIE
TPAEKTOPHH 4YacTUll NPEACTABISIIH COOOI Mapy TpexMepHbIX HBOHHBLIX CIHpanefl ¢ HAKMOHHBIMU
ocaMH. Hasa GonbluMx 3HaYeHWW yrna nojiydeH BUXPb B BHIE NABYXMEPHOM NpPOOOALHON sueHKH.
CTpyKTYypbl Te€4eHUs, MONMYYEHHBIE B 3THX pacueTax npu Ra = 4000 u Pr= 10, xopoiuo cornacyrorcs
¢ doTorpadpuamMu, npeacTaBieHHbIMH B | 4YacTH 1nA TAMLUEPONs B KIOBETE pa3sMepaMu
40 x 240 > 20 MM npu Ra = 12 000.
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